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NADPH-diaphorase activity in the paraventricular
nucleus of the hypothalamus: distribution,
coexistence and functional implications
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ABSTRACT

In mammals neurons of the hypothalamic para-
ventricular nucleus exhibit intense and selective
staining (mainly magnocellular component)  for
NADPH-diaphorase. Several coexistences of this
enzyme with neurobiological substances and func-
tional implications have been reported. Additio-
nally, different experimental conditions such as salt
loading, food deprivation, stress, lactation,
hypophysectomy and hormonal treatments promo-
te changes in the expression of the enzyme in the
paraventricular nucleus. In the present paper we
analyze the information available about the distri-
bution of NADPH-diaphorase activity in the para-
ventricular nucleus, the coexistence with different
bioactive molecules and its possible functional
roles, We conclude that 1.- There is a widespread
expression of NADPH-diaphorase activity in the
three different types of neurons located in the
paraventricular nucleus (magno-, parvo- and
mediocellular ones). However, the highest concen-
fration of the neurons showing this activity is situa-
ted at the level of the magnocellular component.
2.- These NADPH-diaphorase neurons co-express
neuropeptides and other neuroactive substances,
although there is not a general correspondence
with a specific one suggesting that NADPH-diap-
horase is not related to general mechanisms invol-
ving these substances. 3.- NADPH-diaphorase acti-
vity in the paraventricular nucleus can be
modulated by ditferent hormones and experimen-
tal conditions. 4.- Based upon the foregoing, nitric
oxide producing neurons in the paraventricular
nucleus are an important cellular population of this
nucleus involved in multiple mechanisms, espe-
cially necuroendocrine  functions. However, the
exact role of this messenger molecule in the para-
ventricular nucleus is not totally known.
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1. Paraventricularinicleus. General considerations.

Over the last decades the hypothalamic para-
ventricular nucleus (PVN) has been the focus of
interest as an excellent model system in which to
study hypothalamic integrative mechanisms. This
nucleus plays a major role in the central control
of various important neuroendocrine, homeosta-
tic and autonomic functions (Silverman and Zim-
merman, 1983; Swanson and Sawchenko, 1983:
Swanson et al, 1986; Kiss, 1988; Armstrong,
1995), including, among others, the control of
pituitary-adrenocortical activity, body fluid home-
ostasis, milk ejection reflex, thyroid hormone
secretion, food intake, pineal melatonin synthesis
(Swanson et al., 1986; Kiss, 1988; Armstrong,
1995). Moreover, among the different hypothala-
mic neuronal groups, PVN is the only one con-
taining populations of neurons that control the
anterior and posterior pituitary secretions.

PVN is a very complex nuclear formation that
in the rat occupies less than a third of a mm? of
tissue on either side of the third ventricle. Tt is
composed by a heterogeneous population of
about 15,000 neurons (Kiss et al., 1983; Kiss et
al., 1991), which contain a large diversity of neu-
rotransmitters or neuropeptides (Swanson et al.,
1986; Palkovits, 1988; Meister et al., 1990; Arms-
trong, 1993),

The cytoarchitectural complexity of this
nucleus has been reflected in an important num-
ber of papers showing different subdivisions,
which displayed no substantive differences. In
fact, the presence of three defined cellular types
(magnocellular, parvocellular and mediocellular)
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anatomically compartmentalized according not
only to the cell size and the location into the
nucleus, but also the neurochemical characteris-
tics, cell packing density and connections is
currently accepted (see among others, Arms-
trong et al., 1980; Swanson and Kuypers, 1980;
Sawchenko and Swanson., 1982; Kiss et al.,
1983; Swanson and Sawchenko, 1983; Swanson
et al., 1986; Sanchez et al., 1990; Kiss et al., 1991;
Armstrong, 1995).

Although several neuroactive substances are
predominantly located in specific subdivisions
of the nucleus, they may be present in various
numbers of others. On the basis of these cytoar-
chitectural criteria, it is possible to distinguish
three functional zones in the nucleus: a parvo-
cellular area (medial) which projects to the
median eminence, a mediocellular area (dorsal
and posterior) which projects to medullary and
spinal cord autonomic centers and a magnoce-
llular area which projects to the posterior pitui-
tary. However, especially at the level of the
parvo- and mediocellular areas, neurons with
intermixed projections exist (Kiss et al., 1991;
Armstrong, 1995).

On the other hand, intermixing between dif-
ferent types of cells in various subdivisions
have been clearly observed and many neurons
of the PVN possess the ability to express multi-
ple biologically active molecules simultane-
ously (Hatton, 1986; Hokfelt et al., 1986; Swan-
son et al., 1986; Ceccatelli et al., 1989; Meister
et al., 1990; Villar et al., 1990; Alonso et al.,
1992 a and b; Arévalo et al., 1993 a; Sanchez et
al., 1994, among others). In addition, the che-
mical phenotype of these neurons can change
with the demand of hormone release (Kiss et
al., 1984; Swanson et al., 1986; Larsen, 1992;
Armstrong, 1995). Thus, it is essential to take
into account in the meaning of any particular
chemical map that the existence of coexistences
and the degree of the same must be considered
in the context of the functional state and sex of
the animal.

For the present analysis the nomenclature and
nuclear boundaries proposed by Swanson and
Kuypers (1980) and Kiss et al. (1991) were used.
As in previous papers from our group (Arévalo
et al., 1992, 1993 a; Alonso et al., 1992 b; San-
chez et al., 1994, 1996 a) and in order to facilita-
te putative comparisons in the chemoarchitectu-
re of the PVN, we considered both the anterior
and medial magnocellular subdivisions of Swan-
son and Kuypers as the one called the commis-
sural subdivision, which includes the anterior
commissural nucleus (Swanson and Kuypers,
1980). In addition, based upon the size of the
neurons, the dorsal and lateral parvocellular sub-
divisions have been called dorsal and lateral
mediocellular subdivisions (Kiss et al., 1991; San-
chez et al., 1997 a and b).

2. NADPH-diaphorase histochemical technique

Three methods are currently used to demons-
trate nitric oxide (NO)-producing neurons in tis-
sue sections, including the hypothalamus: immu-
nohistochemistry with antisera raised against
nitric oxide synthase (NOS) (see Yamada et al,,
1996), in situ hybridization with antisense probes
complementary to NOS mRNA (see Ceccatelli et
al., 1996) and the reduced nicotinamide adenine
dinucleotide phosphate (NADPH)-diaphorase
histochemical method: NADPH-diaphorase (ND)
(Arévalo et al., 1992).

NOS catalyzes the conversion of L-arginine to
L-citrulline and NO, in a stochiometric reaction.
Several isoforms of NOS have been purified and
molecularly cloned (Moncada and Higgs, 1993;
Bredt and Snyder, 1994). The neuronal isoform
and the endothelial isoform are constitutive, cal-
cium/calmodulin dependent, enzymes which
produce NO for short periods in response to
receptor activation. In addition, NO may be pro-
duced by the macrophage isoform (present in
some populations of glial cells) in a calcium-
independent manner, obtaining larger amounts
of NO for long periods.

ND-positive neurons are frequently stained in a
Golgi-like way with extensive details of the den-
dritic arborizations and lengthy axons, providing
an important anatomical information. ND is widely
found throughout the Central Nervous System.
The highest concentration of the enzyme is found
in the cerebellum, whereas in other brain regions,
e.g. cerebral cortex and hippocampus ND is
expressed very selectively in only a few neurons.

Although the distribution of ND-active cells is
reliable in animals studied under the same expe-
rimental conditions, several aspects must be con-
sidered. As we described previously, of special
interest for the interpretation of some data at the
level of the PVN is that the existence and ratio of
coexpression among different messenger mole-
cules, including ND, must be considered in the
context of the functional state, sex of the animal
and the methodological approach, especially the
method of ND/NOS detection. Thus, the inter-
pretation of ND activity in a given brain region
must be cautious and besides its quality as an
excellent neuroanatomical marker, this staining
may indicate variations in the physiological con-
ditions of a given cell.

3. ND activity in the PVN

The first papers to mention in the hypothala-
mus the presence of ND activity were published
in the mid eighties (Vincent, 1986; Sagar and
Ferriero, 1987). These authors described positive
neurons located in the PVN (both in the magno-
and parvocellular subdivisions) and in the supra-
optic nucleus.
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All neuronal types of the nucleus (magno-,
parvo- and mediocellular) show positive labe-
lling (Sanchez et al., 1997 a and b). In the mag-
nocellular subdivisions, most of the stained neu-
rons are located in the posterior part of the
nucleus, forming a dense cluster of ND-active
neurons (Alonso et al., 1992 a and b; Arévalo et
al., 1992 and 1993 a; Calka and Block 1993 a and
b; Torres et al., 1993; Sianchez et al., 1994; Amir.,
1995; Vanthalo and Soinila., 1995; Yamada et al.,
1996) (Figs. 1 and 2). A few stained cells are pre-
sent in the commissural subdivision (Fig. 4) (Aré-
valo et al., 1992).

In the parvocellular subdivisions, the neu-
rons are predominantly situated close to the
wall of the third ventricle, in the anterior part of
the periventricular subdivision (Arévalo et al.,
1992). In the latter, the number of stained neu-
rons is higher in the dorsal part of the ventricle
than in the ventral one. Positive neurons are
also situated in the anterior and medial parvo-
cellular subdivisions (Figs. 1 and 2). However,
the number of these neurons is very scarce,
especially in the medial subdivision (Fig. 2)
(Arévalo et al., 1992). In the dorsal and lateral
mediocellular subdivisions, some labelled neu-
rons are present. In the dorsal one, they form a
small cluster located close to the dorsal part of
the third ventricle (Fig. 1). In the lateral subdi-
vision ND-stained neurons are also present (Fig.
3) (Arévalo et al., 1992).

On considering the ontogeny of ND in the
PVN, Torres et al. (1993) have reported the
emergence of ND expression in the postnatal rat.
ND is present as a ring of fibers around small
bipolar neurons at P1 of life. Progressively, the
staining appears in the perikarya, predominantly
located in magnocellular neurons. NOS-positive
neurons achieve their maturity about the time of
weaning.

4. Coexistence of ND with neuropeptides and
other neurodctive substances in the PVN.

Although a general coexistence has not been
found, it has been shown that specific groups of
ND-active neurons colocalize neurotransmitters,
neuropeptides and others neuroactive substan-
ces in different brain regions. Several partial coe-
xistences of ND have been found in the PVN.
Most of these coexistences have been studied in
magnocellular neurons since the ND-activity is
preferentially located in this neuronal type. The
area-specific patterns of coexpression and segre-
gation with other molecules found in these stu-
dies provide a clue to the cellular mechanisms
underlying the ND selective staining.

At present, in this nucleus colocalizations of
ND with vasopressin, oxytocin, somatostatin,
corticotropin-releasing factor, angiotensin, cal-
bindin D-28K, calretinin, enkephalin, dynorphin,

cholecystokinin, pituitary adenylate cyclase-acti-
vating polypeptide (PACAP-38), galanin messa-
ge-associated peptide, acetylcholinesterase are
known. Finally, there are additional examples of
coexistence of ND/NOS and other messenger
molecules such as substance P in the rest of
hypothalamic nuclei (Yamada et al., 1996) that
are not present in the PVN and as a consequen-
ce are not a focus of the present analysis.

4.1. ND-Vasopressin. Several studies from
different groups have shown partial coexistence
of this neuropeptide and ND in the PVN (Calka
and Block, 1993 a; Torres et al., 1993; Sinchez et
al., 1994). In general terms, all these studies des-
cribed that neurons showing both markers were
preferentially located at the level of the magno-
cellular subdivisions (Fig. 5). In the parvocellular
subdivisions only a few double labelled cells
were present (Calka and Block, 1993 a). Howe-
ver, these authors specify that the double labe-
lled neurons found in the parvocellular subdivi-
sions showed morphological characteristics
consistent with magnocellular neurons. Nevert-
heless, the presence of coexistence of ND and
the antidiuretic hormone in non-magnocellular
neurons of the PVN has been clearly described
(Sanchez et al., 1996 a) (Fig. 5).

With regard to the number of cells showing
coexistence, there is general agreement that the
degree of coexistence is very low. In fact, Torres
et al. (1993) found that the degree of coexisten-
ce was 3.0% and Sinchez et al. (1994) also
reported a similar degree of coexistence in mag-
nocellular subdivisions, although the same was
slightly higher (10% in the magnocellular com-
missural subdivision and 5% in the magnocellu-
lar posterior subdivision).

Finally, concerning vasotocin (the nonapepti-
de produced in the hypothalamo-hypophysial
system of non-mammalian vertebrates and clo-
sely related to the mammalian vasopressin —sce
Sanchez et al., 1991-), in the Japanese quail the
coexistence of ND and vasotocin has also been
evaluated (Sanchez et al., 1996 b). No colocali-
zation has been found in any hypothalamic area,
in contrast with the above-mentioned results in
rodents. This fact clearly indicates a high inters-
pecies variability in the distribution (Panzica et
al., 1994) and coexistences with bioactive mole-
cules (Sanchez et al., 1996 b) of ND activity in
the hypothalamus.

4.2. ND-Oxytocin. At present different stu-
dies have shown the coexistence of ND and oxy-
tocin (Torres et al., 1993; Miyagawa et al., 1994;
Sanchez et al., 1994; Yamada et al., 1996). There
is agreement about the location and type of
these neurons displaying both markers (anterior
part of the nucleus in magnocellular neurons)
(Fig. 4).However, some discrepancies in the ratio
of coexistence have been noticed. In fact, San-
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chez et al. (1994) found in the different subdivi-
sions of the nucleus a ratio of colocalization
never higher than 13%, with the lowest value in
the posterior part of the nucleus, whereas Torres
et al. (1993) found that 36% of the neurons
expressing NOS also displaved oxytocin. Miya-
gawa et al (1994) reported that most oxvtocin
neurons express ND and, finally Yamada et al.
(1996) showed that about 70% of the oxytocin
neurons coexpress NOS.

4.3. ND-corticotropin-releasing factor. At
the level of the parvocellular component, the
presence of neurons coexpressing ND and cor-
ticotropin-releasing factor has been demonstra-
ted (Torres et al., 1993; Siaud et al., 1994; Yama-
da et al, 1996). In addition, according to
Yamada et al. (1996) some magnocellular neu-
rons also colocalize both markers. The degree
of coexistence in the parvocellular neurons
varies from 4.5% (Torres et al., 1993) to 15%
(Siaud et al., 1994).

4.4. ND-angiolensin. Calka and Block
(1993b) reported a very limited coexistence of
ND and angiotensin. According to these authors,
a few double labelled (ND and angiotensin)
neurons were present in the magnocellular sub-
divisions. No parvocellular neurons showed this
coexistence.

4.5. ND-somatostatin. Colocalization of ND
and somatostatin has been exclusively found in
the periventricular subdivision (Alonso et al.,
1992 a; Yamada et al., 1996). Only a neuronal
subpopulation represented by a few neurons
expressed both markers (3.39%). The double-
labelled cells were predominantly located in the
ventral part of the subdivision.

4.6. ND-Calbindin D-28 K. An important
number of neurons expressing ND and CaBP-
D28K simultaneously has been recognized at the
level of the different magnocellular subdivisions in
which this calcium-binding protein is strongly
expressed (Alonso et al., 1992 b; Sinchez et al.,
1992). In the anterior magnocellular subdivision
colocalization rises up to 21.17% whereas in the
posterior magnocellular subdivision the degree of
coexistence was slightly lower: 17.35%.

4.7. ND-calretinin. Infrequent cellular coexis-
tence of ND and calretinin has been reported by
Arévalo et al. (1993 a) (Fig. 7). In fact, the degree
of coexistence was never higher than 1% in the
different subdivisions. In order to explain this
low ratio of coexpression it is important to bear
in mind that calretinin is mainly located in the
parvocellular and mediocellular components
(Arévalo et al., 1993 b) of the PVN whereas ND
activity is preferentially situated in the magnoce-
llular component.

4.8. ND-enkepbalin. Yamada et al. (1996)
observed a high colocalization between NOS and
enkephalin in the medial parvocellular subdivi-
sion and in less degree in the magnocellular com-
ponent. These authors showed that this coexpres-
sion is the most frequent combination in many
parts of the hypothalamus although Murakami
(1994) reported that only 6-9% of enkephalinergic

neurons in the PVN expressed ND activity. ;

4.9. ND-dynorphin B. Murakami (1994) sho-
wed that about 37%-84% dynorphin B-immuno-
reactive neurons of the parvocellular and mag-
nocellular components of the PVN colocalized
ND-activity.

4.10. ND-cholecystokinin. The most frequent
colocalization between both substances was
observed in the posterior magnocellular subdivi-
sion followed by the medial parvocellular part
(Yamada et al., 1996). The percentage of NOS
neurons showing cholecystokinin was 24.5%,

4.11. ND-pituitary adenylate cyclase-activa-
ting polypeptide. Okamura et al. (1994a), by
means of a combination of pituitary adenylate
cyclase-activating  polypeptide  (PACAP-38)
immunocytochemistry and ND-histochemistry,
reported that virtually all PACAP-38-immunore-
active neurons in the PVN displayed ND activity.

4.12. ND-Acetylcholinesterase. Partial coe-
xistence between both markers has been prefe-
rentially described in magnocellular neurons
(Fig. 8) whereas in the parvocellular ones only
some double labeled neurons were detected,
mainly located in the periventricular and medial
subdivisions (Crespo et al., 1998).

ND positive (blue), different bioactive molecules (brown) and coexistences (dark brown or black) labelled neurons in the PVN.

Figs 1 to 3.— ND-active neurons in the PVN. 1: Note the preferential location of neurons in the magnocellular posterior subdivision. A
group of positive neurons is situated at the level of the dorsal mediocellular subdivision (arrowheads). In the medial and peri-
ventricular parvocellular subdivisions some scattered neurons can be seen (arrows). 40 x. 2: Typical magnocellular neurons of the
posterior subdivision. 100 x. 3: Some ND-active neurons can be seen in the lateral mediocellular subdivision. 100 x.

Fig. 4— ND and oxytocin-labelled neurons in the commissural subdivision. 100 x.

Fig. 5.— High concentration of neurons showing ND activity and vasopressin-labelled neurons in the posterior magnocellular subdivision.

Dark brown and black neurons express coexistence. 100 x

Fig. 6.— ND and oxytocin-labelled neurons in the lateral mediocellular subdivision. 100 x.
Fig. 7.— ND and calretinin-labelled neurons in the lateral mediocellular subdivision. 100 x.
Fig. 8.— ND and AChE-labelled neurons in the posterior magnocellular subdivision. 100 x.
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5. Specific possible functions of ND/NOS neurons
in the PVN,

NO is one of the neuroactive chemicals pro-
duced in the PVN in magno-, parvo and medio-
cellular neurons. Since it is a highly labile mole-
cule, the presence of NO depends on the
presence and activation of its synthetic enzyme,
NOS. As we have previously indicated, the neu-
ronal isoform of NOS is labeled by the ND his-
tochemical technique (Hope et al., 1991). Thus,
NOS activity as measured by histochemical stai-
ning for ND has become a useful tool to locali-
ze NO-producing cells.

Apart from the general role in the regulation
of hypothalamic portal blood flow and the con-
trol of posterior pituitary hormone secretion
(Ceccatelli et al., 1993 b; Murakami, 1994; Kado-
waki et al., 1994), at present some information is
available about the possible role of NO in the
hypothalamus. As we have described previously,
a wide population of neurons in the PVN
(mainly magnocellular) express an intense ND
staining, indicating an important significance of
NO in this nucleus. By contrast, as Torres et al.
(1993) pointed out, the partial coexistences
found in all studies indicate that NO is probably
not essential for basic PVN neurochemical func-
tions, although this gas may modulate the func-
tional activity of these neurons.

On analyzing, at first, the coexistence of ND-
activity with calbindin D28K and calretinin it is
currently known that NOS is a calcium/calmo-
dulin-dependent enzyme (see Garthwaite and
Boulton, 1995) whereas calbindin D-28k and cal-
retinin are two calcium-binding proteins which
are assumed to control intracellular levels of cal-
cium. Although a relationship between the pre-
sence of NOS in a given nucleus or cell and a
better handling of calcium could be expected,
the available data indicate that both systems are
independent, with degrees of colocalization ran-
ging from 17.35% to 21.17% for calbindin (Alon-
so et al., 1992b) and 0% to 0.7% for calretinin in
the different subdivisions of the paraventricular
nucleus (Arévalo et al., 1993 a).

Changes in the expression of ND/NOS in the
neurons located in the PVN have been shown to
occur after a number of experimental conditions.
Hypophysectomy produces a transient increase
in NOS in the magnocellular component of the
PVN when compared to normal animals (Villar et
al.,, 1994 a). The maximal increase in staining
was observed between 5 and 7 days and by 14
days NOS was back to normal levels. These
changes in expression when the axons of the
cells are transected may indicate a role of NO in
neurosecretory neurons after injury.

Dehydration increases the NADPH-activity in
the neural lobe (Sagar and Ferriero, 1987) and it
is currently well known that salt-loading and
dehydration promote changes in the expression

of the enzyme at the level of the PVN (Villar et
al., 1994 b; Kadowaki et al., 1994; Blazquez et al,
1995). Additionally, the coexistence of ND with
angiotensin and vasopressin (Calka and Block.,
1993 a and b; Torres et al., 1993; Sanchez et al.,
1994), two nonapeptides implicated in the con-
trol of fluid balance, strongly suggests that
ND/NOS stained neurons are in close relations-
hip with osmoregulation.

In addition to the effect of water absence in
the diet, food deprivation has been also shown
to modulate ND/NOS activity in the PVN sug-
gesting a role for NO in the central regulation of
food intake in the rat (O’Shea and Gundlach,
1996), although the inhibition of the NOS gene
expression in this nucleus is independent of
serotonin depletion (Ueta et al., 1995 a).

On considering a possible role of NO in the
regulation of the hypothalamic-pituitary adrenal
axis and stress, immobilization stress activates
the NOS neurons of the PVN (Calza et al., 1993;
Kishimoto et al., 1996). Bilateral adrenalectoiny
does not affect the histochemical expression of
ND activity and only a very slight increase in the
number of neurons showing ND can be detected
following this experimental condition (Sinchez
et al., 1996 b). However, the coexpression of
ND/NOS and corticotropin-releasing factor
(Torres et al., 1993; Siaud et al., 1994; Yamada et
al., 1996) found in parvocellular subdivisions
connecting to the adenohypophysis may also
suggest a possible modulating role of NO in the
control of the adenohypophyseal activity invol-
ving corticotropin hormone. In addition, an inhi-
bitory influence of NO on cytokine-induced rele-
ase of corticotropin releasing factor, ACTH and
corticosterone (Costa et al., 1993: Rivier and
Shen, 1994) has been reported.

Lactation increases both ND-activity and NOS
gene expression in this nucleus (Ceccatelli and
Erikson, 1993). Since it is well established that
PVN plays a major role in regulating milk ejec-
tion (Wakerley et al., 1988), a possible role of
NO in the hypothalamic-pituitary regulation of
this physiological response is evident. In addi-
tion, the participation of NO along with oxytocin
in changes underlying lactation and parturition
has been also proposed (Torres et al., 1993)
since NO regulates ¢GMP levels in the uterus
(Schmidt et al., 1992). Moreover, NO also inhibits
the release of prolactin (Gonzalez et al., 1996).

Nowadays, it is perfectly established that the
expression of ND/NOS in the ventromedial
nucleus is regulated by estradiol (Okamura et al.,
1994 b; Ceccatelli et al., 1990). In agreement with
this, it has recently been demonstrated that ova-
riectomy and/or treatment with estradiol also
affects the expression of ND activity in the PVN
(Sinchez et al., 1997 b). In this sense, it was pre-
viously known that in male rats castration and/or
treatment with testosterone also affects ND
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expression in the PVN (Sinchez et al., 1997 a).
Additionally, concerning the hypothalamo-
hypophysial gonadal axis it is well known that
NO mediates sexual behavior in male/female
rats via gonadotropin-releasing hormone (Cecca-
telli et al., 1993 a; Mani et al., 1994; Benelli et al.,
1995) although in the hypothalamus there is an
absence of coexistence between ND/NOS and
this peptide hormone (see Rubio et al., 19906).
The presence of a new receptor for estradiol (B)
in the hypothalamus opens new possibilities for
the action of estrogens upon the ND-neurons of
the PVN (Katzenellenbogen, 1997; Kuiper et al.,
1997).

Very little is known about the possible effects
of thyroid status upon the ND/NOS expression.
Ueta et al. (1995 b) showed that induced
hypothyroidism in male rats produced a highly
significant reduction in NOS gene transcripts in
the PVN. The addition of T3 to the diet comple-
tely prevented this reduction. On the other hand,
hyperthyroidism more than doubled the preva-
lence of NOS transcripts in the PVN after a simi-
lar time. These data point to an important role of
NO in the control of the hypothalamo-pituitary
thyroid axis.

Finally, the coexistence of ND and somatosta-
tin (Alonso et al., 1992 a; Yamada et al., 1996)
suggests a possible participation of NO in the
hypothalamic control of growth hormone secre-
tion. In addition, an inhibitory effect of NO upon
the release of somatostatin has been reported
(Aguila, 1994).

In conclusion, the wide presence of ND/NOS
activity in the PVN, the different coexistences with
bioactive molecules, the comparisons with other
neuroactive substances present in the nucleus
(without coexpression) and the regulation of the
expression of the enzyme by different hormones
clearly indicate that NO-producing neurons of the
PVN are a key system in the functioning of this
nucleus, although the exact physiological signifi-
cance of this gas in the PVN remains unknown,
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