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SUMMARY 
 

This study deals with the application of methods 
of second-order stereology to investigate the spa-
tial distribution of nuclei in normal prostate, pros-
tatic intraepithelial neoplasia and adenocarcinoma. 
We aimed to identify differences related to the pro-
gression of premalignant lesions (PIN) to carcino-
ma, as well as the spatial changes in relation to 
tumour grade. Estimation of second-order stereol-
ogy parameters, such as g(r), (pair correlation 
function), statistic M, and Clark-Evans aggregation 
index (CEAI) were employed to investigate the 
distribution of nuclei. 

Linear discriminant analysis (LDA) with M and 
CEAI as model variables was implemented to clas-
sify the cancer cases into two groups according to 
Gleason score. We found that the point processes 
of the nuclei in prostatic cancer and normal tissues 
differed by first-order as well as by second-order 
properties. In the PIN the mean g-values were in-
termediate between normal and cancer. The LDA 
indicates that M and CEAI were able to classify 
into the correct group of Gleason score more than 
90% of the cases analysed. Cancer cases showing 
a higher degree of disorder in the spatial distribu-

tion of nuclei were significantly classified into the 
group of higher Gleason score. The nuclei in both 
normal and pathological prostate were not Poisson 
distributed. Additionally, we found that the progres-
sion from normal tissue to carcinoma was accom-
panied by a progressive increase in spatial disor-
der which is intermediate in pre-malignant lesions 
(PIN). The parameters employed were able to 
classify the cancer cases according to the Gleason 
score. 

 
Key words : Prostate cancer – PIN – Gleason 
score – Nuclear patterns – Pair correlation function 
– Point processes  

 
INTRODUCTION 
 

There are numerous studies on nuclear patterns 
in prostate carcinoma and prostatic intraepithelial 
neoplasia (PIN). Most of them make reference to 
the chromatin distribution and morphometric 
changes in relation to the process of malignant 
transformation (Boone et al., 2001; Huisman et al., 
2007). Several authors indicate that nuclear texture 
features allow discrimination of most benign and 
malignant prostate nuclei (Bartels et al., 1998; Bar-
tels et al., 2001; Huisman et al., 2007; Veltri et al., 
2012). For example, some nuclear morphometric 
score, obtained by automated digital analysis, 
could be validated for discrimination of benign from 
cancer nuclei (Gann et al., 2013). Besides, the in-
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clusion of nuclear features in the prognostic factor 
score may aid in stratifying patients into high-risk 
and low-risk groups for testing adjuvant therapies 
for prostate cancer (Partin et al., 1992). Other 
studies deal with the interrelation of tumour struc-
ture and the spatial distribution of prostate cancer 
nuclei, observing that the Gleason classification 
matched in part with the classification based on the 
fractal dimension capacity of the nuclei 
(Waliszewski et al., 2015). 

The distribution of nuclei (either from normal or 
tumour cells) in a tissue, could be assimilated to 
the spatial arrangement of a random set of points, 
and then might be studied by methods related to 
stochastic geometry (Baddeley et al., 2005). The 
most basic information is an estimate of the inten-
sity λ of the point process – i.e., the mean number 
of points (nuclei) per unit reference area. Usually, 
it is sufficient to estimate λ simply by counting the 
number of points in the observation windows. 

The first-order parameters, as intensity, tell noth-
ing about the geometrical architecture (pattern) of 
the elements such as blood vessels, glandular aci-
ni, or cell nuclei. 

To describe arrangements of random sets in 
space, a well-established approach consists of 
methods of second-order stereology (Mattfeldt et 
al., 1993b). Whereas the intensity is a single quan-
tity, the second-order functions provide a series of 
values as a function of the interpoint distance r. 
These values indicate which kind of interaction be-
tween points or nuclei prevails at a certain dis-
tance. This interaction may consist of attraction 
(clustering) or repulsion, or otherwise there may be 
no interactive effects between the points at all at a 
certain distance (Mattfeldt, 2005; Mattfeldt et al., 
2006). 

Second-order stereology could bring in this re-
spect valuable information about the spatial distri-
bution of nuclei of malignant or premalignant le-
sions, and probably contribute to an appropriate 
gradation of tumour aggressiveness. For example, 
in the case of mammary tumours, the intensity and 
covariance of the volume fraction of tumour tissue 
has been analysed by estimation of correlation 
function k(r), the pair correlation function g(r), and 
the radial distribution function (RDF r). The clearest 
distinction between groups was obtained by esti-
mation of g(r) (Mattfeldt et al., 1993a). 

The ordinary planar pair correlation function g(r) 
of the sectional profiles of particles can be used to 
estimate whether these particles (i.e. nuclei) are 
showing a tissular distribution with either complete 
spatial randomness or attraction (clustering), or 
even repulsion (Mattfeldt, 2005; Mattfeldt et al., 
2006). In this sense, the analysis of g(r) has been 
applied for comparison between normal and tu-
mour blood vessels in the prostate gland (Mattfeldt 
et al., 2006), and also for the study of distribution 
of cell nuclei from mammary carcinoma (Mattfeldt, 
2011). 

The present study deals with the application of 
methods of second-order stereology to investigate 
the presence of spatial distribution of nuclei in nor-
mal and pathological prostate (prostatic intraepi-
thelial neoplasia and adenocarcinoma). It is intend-
ed to identify potential differences in these patterns 
in relation to the progression of premalignant le-
sions (PIN) to carcinoma, as well as the spatial 
changes in relation to tumour grade. 

 
MATERIAL AND METHODS 
 
Material 

Fifty four prostate specimens were collected from 
both La Princesa Hospital (Madrid, Spain), and 
Madrid Norte-Sanchinarro Hospital (Madrid, 
Spain): 10 were from adults, (CTR group), age 
(mean ± SD): 33 ± 8.5; range: 20-47 years. All 
these specimens were from healthy subjects de-
ceased in traffic accidents, without endocrine or 
reproductive pathology, and eligible as donors for 
transplant. The age of the CTR group was under 
50 years old to avoid the presence of subclinical 
hyperplastic changes, relatively frequent above 
this age (McNeal, 1990). The other 44 were surgi-
cal specimens (radical prostatectomy) from pa-
tients diagnosed with prostate carcinoma: age 
(mean ± SD): 70 ± 10, range: 56 to 85 years. In all 
these cases, the diagnosis of carcinoma was previ-
ously confirmed by histopathology. Among these 
cases, in 18 of them, high-grade PIN lesions (PIN 
group) were localized and studied. In the remain-
ing 26 tumour cases, the invasive adenocarcinoma 
was considered (Ca group). All cancer cases were 
graded according to Gleason score (Epstein et al., 
2005) (Table 1) without prior neoadjuvant hormo-
nal therapy. All the ethical requirements were ful-
filled in order to obtain the prostatic tissue either at 
the moment of the multiorganic extraction for 
transplant (CTR group) or during surgery (PIN and 
Ca groups). Immediately after extraction, the spec-
imens were fixed during one week in 10% para-
formaldehyde in PBS, pH 7.4. After fixation, the 
specimens from the three groups were thoroughly 
sectioned into 2-mm-thick slices, performed by 
isotropic uniform random sampling (IUR sections), 
in order to preserve the isotropy of the tissue 

Table 1.  Summary of the Gleason score for the Ca 
group 

Gleason score  percentage of cases  

4 (2+2)  4  

5 (2+3)  11  

6 (3+3)  23  

7 (3+4)  62  

Summary of the Gleason score for the Ca group. In the column on the 
left were expressed the total score and the primary and secondary 
grade (between parenthesis). In the column on the right was expres-
sed the percentage of cases for each score observed, over a total of 
26 cases.  
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(Baddeley et al., 2004). 
 

Tissue processing  
All the specimens were processed for paraffin 

embedding. The paraffin blocks were exhaustively 
sectioned. Five-µm-thick sections were performed 
on each block. One from each set of sections was 
randomly selected and stained by haematoxylin-
eosin. All slides were dehydrated in ethanol, and 
mounted in a synthetic resin (Depex, Serva, Hei-
delberg, Germany). 

Data acquisition 
Three fields chosen by systematic random sam-

pling were explored for each section from CTR, 
PIN and Ca groups. The result was a series of im-
ages from the three groups, sized 512 x 680 pix-
els. The final magnification (x200) was such that 
512 pixels represented 327 µm. The images were 
captured using a colour digital camera DP 70 
(Olympus Corporation of the Americas, PA, USA) 
with a resolution of 12.5 mega-pixels, attached to 
an Olympus microscope fitted with a motorised 
stage controlled by the stereological software Cast
-Grid (Stereology Software Package, Silkeborg, 
Denmark). This program controls the XY displace-
ment of the microscope stage and allows the se-
lection of fields to be studied by random systemat-
ic sampling after the input of an appropriate sam-
pling fraction (Santamaria et al., 2011). 

Subsequently, the images were processed using 
the public domain Java image processing pro-
gram, Image J (version 1.48), developed at the US 
National Institutes of Health and available on the 
Internet at http://imagej.nih.gov/ij/index.html 
(Rasband et al., 1995). A binary image was pro-
duced where the cell nuclei was shown as black 
and the reference space (cytoplasm, stroma, etc.) 
as white. 

After digitizing the coordinates of the mass cen-
tre of the nuclei profiles on sections (using an ap-
propriate plugin from Image J), exploratory meth-
ods of data analysis were applied to characterize 
the two-dimensional point process of the nuclei. 
The most basic information is an estimate of the 
intensity λ of the point process – i.e., the mean 
number of nuclei per unit reference area (Stoyan 
et al., 1994). It is important to note that in what fol-
lows the term "point" is interchangeable with 
"nucleus". 

Whereas the intensity is a single quantity, sec-
ond-order functions provide a series of values as a 
function of the interpoint distance r. For the esti-
mation of these functions, it is advisable to assume 
stationarity and isotropy in the patterns studied 
(Mattfeldt, 2005; Mattfeldt et al., 2006). 

One of the means of analysing point patterns is 
the use of statistics based on the co-occurrences 
of pairs of points. In the present study, the pair 
correlation function g(r) was employed. The g(r) 
function is analogous to a probability density func-
tion, that is, the derivative of a cumulative distribu-

tion function, in our case the K-function (Ripley, 
1988; Stoyan et al., 1995), which is a measure of 
the average number of points found within a set 
distance r, from each point, divided by the mean 
intensity (λ) of the pattern. Then, the pair correla-
tion function g(r) may be obtained after differentia-
tion and normalization of K(r) (Mattfeldt, 2005). 

As reference model (null hypothesis) for isotropic 
and stationary point processes, the model of a sta-
tionary Poisson point process was used; in this 
particular case there is no interaction between the 
points at all distances. The points are distributed 
independently at random, isotropically and homo-
geneously in the plane, a state which has been 
denoted as complete spatial randomness (CSR) of 
points (Diggle et al., 1991; Diggle, 2003; Schladitz 
et al., 2003). For a stationary Poisson point pro-
cess, g(r) ≡ 1. In the measured data, values of g(r) 
below 1 indicate repulsion and values above 1 indi-
cate clustering for point pairs of such a distance r. 
Hills and valleys above and below the constant 
value 1 indicate domains of r-values with tenden-
cies of the points for aggregation and repulsion, 
respectively (Mattfeldt et al., 2006). 

 
Isotropy of nuclei distribution 

Prior to estimating the second-order functions is 
essential to demonstrate the isotropy of the distri-
bution of nuclear population (Mattfeldt et al., 2006). 
Anisotropy analysis is the study of whether spatial 
pattern differs along different cardinal axes. For 
this purpose, the angular correlation between the 
distribution of the nuclei and certain directions in 
the plane was estimated. The angular correlation, 
proposed by Simon G (Simon, 1997), is a method 
of determining the degree of anisotropy in two-
dimensional data. This method calculates the cor-
relation between the distance between pairs points 
projected onto a vector in a specified direction and 
the difference in the values associated with those 
two points. 

To run the angular correlation analysis, the data 
file containing the coordinates of the mass centre 
of the nuclei profiles were superimposed to a rec-
tangular matrix where each row consists of a spe-
cific grid cell: the first column contains the coordi-
nates of the cell, and the subsequent column con-
tains the number of nuclei determined for the cell. 
The correlation was tested along 360 angular di-
rections. The output of the analysis – i.e., the re-
gression coefficient (R) – was plotted against each 
angular direction tested (0 to 360 degrees). The 
analysis was performed in all the groups studied, 
using the software for spatial statistics, PASSAGE 
(Version 2.0) (Rosenberg et al., 2011). 

 
Calculation of the pair correlation function 

The g(r) function was calculated by all the sets of 
nuclear profiles obtained in the three groups of 
study using the Spatstat, which is a package for 
the statistical analysis of spatial data. Currently, it 



Pair correlation functions in prostate 

 364 

deals mainly with the analysis of patterns of points 
in the plane, and runs in R (version 2.15.1), which 
is a language and environment for statistical com-
puting and graphics (Baddeley et al., 2005). 

In order to test whether the planar point patterns 
provided for the distribution of cell nuclei for the 
groups of study differ from a CSR distribution of 
points, envelopes for the g(r) function were done 
for each of the images analysed. 

The “envelope” command from Spatstat performs 
simulations and computes envelopes of a sum-
mary statistic based on the simulations. These en-
velopes can be used to assess the goodness-of-fit 
of a point process model to point pattern data 
(Diggle, 2003). 

Briefly, to test CSR for a point pattern (i.e. a nu-
clei pattern from a case) we generate 99 simula-
tions of CSR (i.e. 99 simulated point patterns each 
being a realisation of the uniform Poisson point 
process) with the same intensity as the given pat-
tern. The simultaneous critical envelopes obtained 
allow us to perform a Monte Carlo test (Ripley, 
1981). The test rejects the null hypothesis if the 
graph of the observed function lies outside the en-
velope at any value of r. 

In each group of study, the values of g(r) were 
calculated pointwise (i.e. for each value of the dis-
tance r), and their confidence intervals (at 95%) 
obtained. These values, together with their simulat-
ed envelopes were plotted as function of the inter-
point distance (r). 

Simultaneously, the intensity (λ) of the process, 
expressed as the average number of nuclei per 
square micron of the reference space ± CI 
(confidence intervals at 95%), was also estimated 
for each group of study. 

To test for statistical differences between the 
mean of g-functions at fixed r-values, bootstrap 
tests were performed (Mattfeldt et al., 2006). 
These methods were used to compute confidence 
intervals for the comparison of g(r) functions 
among the three groups of study. Bootstrap meth-
ods are defined as computer-intensive methods 
based on independent resampling of an empirical 
data set with replacement (Mattfeldt, 2011). The 
bootstrap method was developed by Bradley Efron 
in 1979 (Efron et al., 1993) and consists basically 
of an independent random resampling of the sam-
ple data with replacement. It is a computer-based 
method largely free of statistical model assump-
tions. In the present study, the bootstrap statistic g
(r) was computed from 1000 bootstrap samples. It 
is assumed that the distribution of the bootstrap 
statistics approximates the distribution of the sta-
tistic in the population (Mattfeldt et al., 2006). 

The confidence intervals (at 95%) obtained r-
wise by bootstrapping, together with the mean val-
ues for each r of the g-functions from CTR, PIN, 
and Ca groups were plotted. 

 
Evaluation of individual g-functions 

In addition to the local computation of confidence 

intervals for fixed r, each estimated g(r) function 
per visual field was evaluated with a method pre-
sented by Stoyan et al. 1990 (Stoyan et al., 1990) 
and Stoyan et al. 1994 (Stoyan et al., 1994). This 
procedure estimates a statistic (M) using the next 
formula: 

Where: 

gmax: First maximum of the g(r) function gmin: The 
following minimum to gmax rmax: The r-value corre-
sponding to gmin  

 
The statistic M is related to the global degree of 

disorder in the spatial point pattern (Mattfeldt et al., 
2006). Large values indicate a high degree of or-
der and may be used as a tool to summarize the 
course of the g-function by a single quantity. The M 
values were calculated for CTR, PIN, and Ca 
groups, and expressed as mean ± CI (confidence 
intervals at 95%) 

 

Fig. 1. In (A), prostate acini from the peripheral zone 
of normal prostate from CTR group can be seen. Hae-
matoxylin-eosine. In (B), the center masses of the 
nuclei from (A) are depicted; well ordered layers of 
points showing a clustered pattern could be seen. 
Scale bar, 127 µm. 
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Estimation of Clark-Evans Aggregation Index 
The Clark-Evans aggregation index (CEAI) is a 

crude measure of clustering or ordering of a point 
pattern. It is the ratio of the observed mean nearest 
neighbour distance in the pattern to that expected for 
a Poisson point process of the same intensity. A val-
ue CEAI > 1 suggests repulsion while CEAI < 1 sug-
gests clustering (Clark et al., 1954). 

Without correction for edge effects, the value of 
CEAI will be positively biased. Edge effects arise be-
cause, for a point close to the edge of the window, 
the true nearest neighbour may actually lie outside 
the window. Hence observed nearest neighbour dis-
tances tend to be larger than the true nearest neigh-
bour distances. The theoretical expected value of 
mean nearest neighbour distance under a Poisson 
process was adjusted for edge effects by the edge 
correction of Donnelly (Donnelly, 1978).To calculate 
CEAI was used the command “clarkevans” from 
Spatstat Package (Baddeley et al., 2005). This com-
mand performs a hypothesis test of clustering or or-
dering of the point pattern. The null hypothesis is 
Complete Spatial Randomness, i.e. a uniform Pois-
son process. The alternative (two-sided) hypothesis 
is that CEAI ≠ 1 corresponding to a clustered or regu-

lar pattern. The estimate was performed for CTR, 
PIN, and Ca groups, and expressed as mean ± CI 
(confidence intervals at 95%). 

 
Statistical comparisons 

The differences among the parameters measured 
(λ, M, and CEAI) for CTR, PIN, and Ca groups were 
compared by ANOVA, comparisons between the 
means for all the groups studied were performed by 
the Newman–Keuls test (p<0.05). 

 
Discriminant analysis to classify cancer cases 
after Gleason score 

The Gleason scoring was organized in two groups 
defined by a cut-off point located at the 50th percentile, 
namely: Gleason < 7 and, Gleason ≥ 7. In order to 
determine the variables that most accurately classify 
cancer cases in the two groups defined by Gleason 
grading, stepwise linear discriminant analysis (LDA) 
(Huisman et al., 2007) was applied to the Ca group 
for the set of variables estimated: λ, M, and CEAI. 
Discriminant variables were selected according to 
Wilks' lambda: at each step, the variable that minimis-
es the overall Wilks' lambda or maximises the associ-
ated F statistic is selected (F to enter = 3.84 and F to 

Fig. 2 (left). (A) Three acini with prostate intraepithelial neoplasia from PIN group can be seen. Haematoxylin-eosine. 
(B) The center masses of the nuclei from (A) are depicted; points showing a clustered pattern were displayed. Scale 
bar, 127 µm. 

 

Fig. 3 (right). (A)  Tumour acini with a Gleason 3 score from Ca group are illustrated Haematoxylin-eosine. (B) The 
centre masses of the nuclei from (A) are depicted, with points showing a pattern with moderate dispersion. Scale bar, 
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remove = 2.71). Wilks’ lambda statistic explains the 
rate of total variability that is not due to differences 
among groups. A lambda of 1 means that the mean of 
the discriminant scores is the same in all groups and 
there is no variability between groups, while a lambda 
near 0 means that there is a significant difference 
among groups. Therefore, Wilks' lambda provides a 
test of the null hypothesis that the population means 
are equal. The larger lambda in the less discriminat-
ing power is present (Hair et al., 1998). 

The estimates of discriminant variables selected, 
expressed as mean ± CI, were compared between 
the two groups of Gleason (<7 and ≥ 7) by a Student 
t test (p<0.05). 

 
RESULTS 
 
Descriptive findings 

From a descriptive point of view, no relevant dif-
ferences have been detected in the distribution of 
the centres of mass of prostatic epithelial nuclei, 

when images from normal prostate, PIN, and carci-
noma were compared (Figs. 1-3). 

Nevertheless, the relative amount per unit of 
area (intensity of point process) of the nuclei was 
significantly increased in Ca group and PIN 
groups in comparison with CTR group, (Fig. 4). 

 
Isotropy of nuclei distribution 

The estimates of the angular correlation did not 

Fig. 4 (above) Graph indicating the intensity of the 
process of points (number of nuclei x 10-3 / µm2) for 
normal prostate (CTR), PIN group (PIN) and cancer 
group (Ca). All the values are expressed as mean ± CI 
(95%). The values with significant differences (p<0.05) 
between them are connected by zigzag lines with ar-
rowheads in both endings. 

Fig. 5 . Graph indicating the regression coefficient (R) 
plotted against the angular directions tested (0 to 360 
degrees). The confidence intervals for the R values 
(dotted lines) from CTR, PIN and Ca cases show a 
wide overlapping. 

Fig. 6 (above). (A)  Estimated g(r) from a selected visu-
al field of tumour-free prostatic tissue (CTR group). 
Note the hard-core effect in the beginning, then weaker 
repulsion, and thereafter first maximum and first mini-
mum. (B) Estimated g(r) from a selected visual field of 
PIN lesion (PIN group). The extension of hard-core 
effect is similar to that observed in (A). Here the curve 
ascends less steeply. (C) Estimated g(r) from a select-
ed visual field of prostatic cancer tissue (Ca group). 
The extension of hard-core effect is similar to that ob-
served in (A) and (B). Here the curve ascends less 
steeply than in CTR group. In all the cases the first 
maximum of g(r) is located over the CSR simulated 
envelope (dotted lines). The straight line in g(r) ≡ 1 in 
the three images represents the graph of a Poisson 
process. In the X axis, the interpoint distance (r) was 
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show significant correlation between the λ of point 
data (intensity of the nuclei) with the angular direc-
tions explored for all the groups of the study (Fig. 
5). 

 
Calculation of the pair correlation function 

In all the groups studied, the g(r) functions lie 
outside of the simulated CSR envelopes for a wide 
range of the interpoint distance (r) (Fig. 6 A-C). 

For all the cases, the curves began with a flat 
curve segment where g(r) = 0 (hard- core effect) 

Fig. 7. Mean values and 95% confidence intervals for 
the g(r) functions of the nuclei for tumour-free tissue 
(solid line), PIN lesions (empty circles), and cancer tis-
sue (empty triangles). The confidence intervals (CI) 
were obtained r-wise by bootstrapping. The CI of the g
(r) functions of CTR and PIN groups are widely over-
lapped for all the r- domains. The CI of g(r) function for 
Ca group lies below those from CTR and PIN groups in 

Fig. 8 (left). Graph indicating (A) the statistic M, and (B) the Clark- Evans aggregation index (CEAI) for normal pros-
tate (CTR), PIN group (PIN) and cancer group (Ca). All the values are expressed as mean ± CI (95%). The values 
with significant differences (p<0.05) between them are connected by zigzag lines with arrowheads in both endings. 
The dashed line for CEAI ≡ 1 (B) indicates the CEAI of points with CSR distribution. 

 

Fig. 9 (right) . Graph indicating (A) the statistic M, and (B) the Clark- Evans aggregation index for cancer cases classi-
fied according to the Gleason score (Gleason < 7, Gleason ≥ 7). The values are expressed as mean ± CI (95%). The 
differences between the two groups were significant (p<0.01) in (A) and (B). 

and attaining thereafter positive values, usually 
quickly mounting to a first maximum gmax and 
then descending to a first minimum gmin. 
In PIN and Ca cases the curve ascends less 
steeply than in CTR specimens. In all the cases 
the first maximum of g(r) is widely located over 
the simulated envelope for CSR process; the 
length of r where g(r) = 0, is similar for all the 
three groups of cases (Fig. 6 A-C). 

Estimates of the mean g-functions per group 
were obtained and 95% confidence intervals (CI) 
were computed by bootstrap methods. Results 
are shown in Fig.7. The profile of the g(r) function 
for Ca group lies outside and below of the CI of g
(r) from CTR and PIN groups. Although the g(r) of 
PIN group falls below the CTR group, their CI 
extensively overlap (Fig. 7). 
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The statistic M showed a progressive decrease 
from CTR to Ca groups, showing an intermediate 
value in the PIN group (Fig. 8 A). In all the cases 
the differences were significant. The Clark Evans 
aggregation index showed an opposite behaviour 
to M: The larger value was in CTR group, the low-
est was observed in Ca group, while in PIN group 
showed an intermediate value (Fig. 8 B). In all the 
cases the differences were also significant. 

 
Discriminant analysis 

The discriminant analysis for Gleason groups 
reveals that the intensity of process (λ) was ex-
cluded from analysis, because the F to enter was 
below the minimum value (3.84). The two remain-
ing variables in order of classificatory power were: 
M and CEAI. With these two variables in the mod-
el, 92% of the cancer cases were correctly classi-
fied into the Gleason groups. Table 2 shows the 
significant reduction of the Wilks' lambda statistics 
with these variables included in the model. The 
estimates of mean values ± CI of these variables 
for each Gleason groups are displayed in Fig.9. 

 
DISCUSSION 
 

Compared with normal prostatic tissue, the inten-
sity of the point process, i.e. number of nuclear 
profiles per square micron of tissue, is significantly 
increased in PIN and prostatic cancer. 

As was expected, the measurements of angular 
correlation indicate that the intensity of process 
shows no preferred direction. Therefore isotropy 
condition is met, which is the indispensable re-
quirement for an unbiased estimation of g(r) 
(Mattfeldt, 2005; Mattfeldt et al., 2006). 

Using bootstrap inference methods for r-wise 
comparisons of mean g-values, a significant de-
crease of the mean g-values at various distances 
could be demonstrated in the prostatic cancer 
group. Hence, the point processes of the nuclei in 
prostatic cancer tissue and normal prostatic tissue 
differ by first-order as well as by second-order 
properties. However, in the PIN group the mean g-
values were similar to the observed for CTR cases, 
and intermediate between normal and cancer. 

Parallel to these changes, it could be shown that 
the height of the first maximum of the pair correla-
tion function declined in the carcinoma group. 

On the other hand, the graph of the g(r) function 

Table 2. Discriminant analysis to classify the cancer 

cases a�er Gleason score. 

Entered variable 1  Wilks´ lambda 2  F3  p4 

CEAI  0.733  8.732  0.007  

M  0.535  10.008  0.001  
1Selected variables. 2This column shows the Wilks’ lambda for every 
variable entered. 3F distribution of Snedecor, the F minimum value for 
entering the variables was 3.84. 4Level of significance p < 0.05.  

for all the three groups lies outside the simulated 
CSR envelope at any value of r. Therefore, the 
null hypothesis that identifies the distribution of 
nuclei studied with a Poisson process can be re-
jected. 

In all the groups, an initial short segment of r-
values where g(r) = 0 was observed. This is a 
hard-core effect, because for the cell nuclei no 
overlapping is possible. This hard-core effect was 
roughly similar in the three groups. Then, the in-
crease of the intensity λ of nuclei in the cancer 
group was not accompanied by a diminished hard
-core distance in the cancerous group, which 
might have been expected. It cannot be excluded 
that the g(r) changes are partially due to a higher 
intensity of the nuclei in the PIN and carcinoma 
groups (Mattfeldt et al., 2006). 

Another explanation for the observed alterations 
of the g(r)-function is a true change of the inner 
order of the neoplastic tissue as compared with 
the normal tissue that affects the nuclei arrange-
ment, irrespective of the intensity of the process. 
In this sense, the distribution of nuclei from PIN 
lesions shows a larger similarity with those of 
controls. These changes on nuclear arrangement 
in neoplastic condition have been also described 
by other authors using fractal measurements, 
indicating that the spatial distribution of cancer 
cell nuclei changes during tumour progression 
(Waliszewski et al., 2015). 

The evolution of statistic M indicates a progres-
sive increase of disorder in the distribution of nu-
clei from normal to carcinoma cases, the results 
being from PIN intermediate. As expected, this 
was opposite to the detected for Clark Evans ag-
gregation index, with a greater clustering in the 
nuclei from control prostates (arranged in normal 
acini) than in cancer cases (more dispersed in 
tumour nests). These results were in agreement 
to those described in other tumour conditions as 
breast cancer, where the estimation of g(r) 
showed that short-range, tubular pattern as well 
as long-range, lobular architecture are better pre-
served in benign than in malignant lesions 
(Mattfeldt et al., 1993a). 

It is interesting to note that PIN cases show, for 
almost all the parameters analysed, an intermedi-
ate position between normal and cancer prostate, 
but, frequently the PIN values of the measure-
ments estimated do not show significant differ-
ences with those of the controls. There is evi-
dence that many prostate cancers are preceded 
by or accompanied with a pre-malignant change 
in the epithelial cells, known as prostatic intraepi-
thelial neoplasia (PIN) (Sequeiros et al., 2015). 
The findings described in the present study sup-
port the progression of the neoplastic transfor-
mation from normal nuclei to PIN pre-neoplastic 
nuclei and, subsequently, to tumour nuclei 
(Bartels et al., 1998). 
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Different histological grading systems have 
been developed including the most frequently 
used Gleason system (Epstein, 2010; Gleason, 
1977). The Gleason score, is a measure of heter-
ogeneity, that is, non-uniformity in structural com-
position of cancer tissue (Waliszewski et al., 
2015). This structural disorder might affect the 
patterns of spatial distribution of nuclei, then the 
Gleason scoring can be put in relation to parame-
ters of second-order stereology investigated in 
the present study. 

The results of LDA indicate that when M and 
CEAI variables are introduced in the model, they 
were able to classify in the correct group of 
Gleason score more of the 90% of the cases ana-
lysed. Besides, cancer cases showing a higher 
degree of disorder in the spatial distribution of 
nuclei (low M, high CEAI) were significantly clas-
sified into the group of higher Gleason score. 
These findings agree with those observed by oth-
er authors, indicating that the partial loss of epi-
thelial interaction as evidenced by changes in the 
g(r) is more pronounced in the more malignant 
lesions (Mattfeldt et al., 1993b). 

Summarizing, the next conclusions can be 
drawn: 

The application of second-order stereology 
tools as g(r) function and aggregation indices pro-
vides valuable information about the spatial distri-
bution of nuclei in normal and pathologic prostate, 
indicating: a) In normal, pre-neoplastic, and neo-
plastic prostate acini, the distribution of nuclei 
was arranged in a pattern that cannot be assimi-
lated to a Poisson distribution – i.e., different from 
a structure with complete spatial randomness; b) 
the progression from normal tissue to prostate 
carcinoma is accompanied by a progressive de-
crease of nuclear clustering (i.e., an increase of 
spatial disorder), which is intermediate in pre-
malignant lesions as PIN. 

The second-order statistic tools were able to 
classify the cancer cases according to the 
Gleason score, showing a high Gleason grade 
those cases with more degree of disorder in the 
spatial distribution of nuclei. 

 
REFERENCES 
 
BADDELEY A, TURNER R (2005) Spatstat: An R 

package for analyzing spatial point patterns. J Stat-
ist Software, 12: 1-42. 

BADDELEY A, VEDEL JENSEN EB (2004) Stereology 
for Statisticians. Chapman & Hall/CRC Press; Boca 
Ratón, Florida, United States. 

BARTELS PH, DA SILVA VD, MONTIRONI R, HAMIL-
TON PW, THOMPSON D, VAUGHT L, BARTELS 
HG (1998) Chromatin texture signatures in nuclei 
from prostate lesions. Anal Quant Cytol Histol, 20: 
407-416. 

BARTELS PH, MONTIRONI RM, BOSTWICK D, MAR-

SHALL J, THOMPSON D, BARTELS HG, KELLEY D 
(2001) Karyometry of secretory cell nuclei in high-
grade PIN lesions. Prostate, 48: 144-155. 

BOONE CW, LIEBERMAN R, MAIRINGER T, 
PALCIC B, BACUS J, BARTELS P (2001) Comput-
er-assisted image analysis-derived intermediate end-
points. Urology, 57: 129-131. 

CLARK PJ, EVANS FC (1954) Distance to nearest 
neighbour as a measure of spatial relationships in 
populations. Ecology, 35: 445-453. 

DIGGLE PJ (2003) Statistical Analysis of Spatial 
Point Patterns. 2nd ed. Arnold, USA. 

DIGGLE PJ, LANGE N, BENES FM (1991) Analysis of 
variance for replicated spatial point patterns in clini-
cal neuroanatomy. J Am Statist Ass, 86: 618-625. 

DONNELLY KP (1978) Simulations to determine the 
variance and edge effect of total nearest-neighbour 
distance. In: Hodder I, (ed). Simulation methods in 
archaeology. Cambridge University Press, Cam-
bridge, London, pp 91-95. 

EFRON B, TIBSHIRANI RJ (1993) An Introduction 
to the Bootstrap. Chapman & Hall, New York. 

EPSTEIN JI (2010) An update of the Gleason grading 
system. J Urol, 183: 433-440. 

EPSTEIN JI, ALLSBROOK WC, JR, AMIN MB, 
EGEVAD LL (2005) The 2005 International Society of  
Urological Pathology (ISUP) Consensus Conference 
on Gleason Grading of Prostatic Carcinoma. Am J 
Surg Pathol, 29: 1228-1242. 

GANN PH, DEATON R, AMATYA A, MOHNANI M, 
RUETER EE, YANG Y, ANANTHANARAYANAN V 
(2013) Development of a nuclear morphometric sig-
nature for prostate cancer risk in negative biopsies. 
PLoS One, 8: e69457. 

GLEASON DF (1977) Histologic grading and clinical 
staging of prostatic carcinoma. In: Tannenbaum M 
(ed). Urologic Pathology. Lea and Febiger, Philadel-
phia, pp 171-198. 

HAIR JF, ANDERSON RE, TATHAM RL, BLACK WC 
(1998) Multivariate data analysis. 5th ed. Prentice 
Hall, Upper Saddle River, New Jersey (USA). 

HUISMAN A, PLOEGER LS, DULLENS HF, JONGES 
TN, BELIEN JA, MEIJER GA, POULIN N, GRIZZLE 
WE, VAN DIEST PJ (2007) Discrimination between 
benign and malignant prostate tissue using chroma-
tin texture analysis in 3-D by confocal laser scanning 
microscopy. Prostate, 67: 248-254. 

MATTFELDT T (2005) Explorative statistical analysis 
of planar point processes in microscopy. J Microsc, 
220: 131-139. 

MATTFELDT T (2011) A brief introduction to com-
puter-intensive methods, with a view towards appli-
cations in spatial statistics and stereology. J Microsc, 
242: 1-9. 

MATTFELDT T, ECKEL S, FLEISCHER F, SCHMIDT 
V (2006) Statistical analysis of reduced pair correla-
tion functions of capillaries in the prostate gland. J 
Microsc, 223: 107-119. 

MATTFELDT T, FREY H, ROSE C (1993a) Second-



Pair correlation functions in prostate 

 370 

order stereology of benign and malignant alterations 
of the human mammary gland. J Microsc, 171: 143-
151. 

MATTFELDT T, VOGEL U, GOTTFRIED HW, FREY H 
(1993b) Second-order stereology of prostatic adeno-
carcinoma and normal prostatic tissue. Acta Stereol, 
12: 203-208. 

MCNEAL J (1990) Pathology of benign prostatic hy-
perplasia. Insight into etiology. Urol Clin North Am, 
17: 477-486. 

PARTIN AW, STEINBERG GD, PITCOCK RV, WU L, 
PIANTADOSI S, COFFEY DS, EPSTEIN JI (1992) 
Use of nuclear morphometry, gleason histologic scor-
ing, clinical stage, and age to predict disease-free 
survival among patients with prostate cancer. Can-
cer, 70: 161-168. 

RASBAND WS, BRIGHT DS (1995) NIH image: A pub-
lic domain image processing program for the Macin-
tosh. Microbeam Anal Soc J, 4: 137-149. 

RIPLEY BD (1981) Spatial statistics. John Wiley & 
Sons, Hoboken, Nueva Jersey, USA. 

RIPLEY BD (1988) Statistical Inference for Spatial Pro-
cesses. Cambridge University Press, Cambridge. 

ROSENBERG MS, ANDERSON CD (2011) PAS-
SaGE: Pattern Analysis, Spatial Statistics and Geo-
graphic Exegesis. Version 2. Methods in Ecology and 
Evolution, 2: 229-232. 

SANTAMARIA L, INGELMO I, RUIZ J, TEBA F 
(2011) Study of the distribution of microvessels in 
normal and pathologic prostate using an information-
based similarity analysis. J Microsc, 243: 303-314. 

SCHLADITZ K, SARKKA A, PAVENSTADT I, HAF-
ERKAMP O, MATTFELDT T (2003) Statistical analy-
sis of intramembranous particles using freeze frac-
ture specimens. J Microsc, 211: 137-153. 

SEQUEIROS T, BASTAROS JM, SANCHEZ M, 
RIGAU M, MONTES M, PLACER J, PLANAS J, DE 
TORRES I, REVENTÓS J, PEGTEL DM, DOLL A, 
MOROTE J, OLIVAN M (2015) Urinary biomarkers 
for the detection of prostate cancer in patients with 
high-grade prostatic intraepithelial neoplasia. Pros-
tate, 75: 1102-1113. 

SIMON G (1997) An angular version of spatial correla-
tions, with exact significance tests. Geographical 
Analysis, 29: 267-278. 

STOYAN D, KENDALL WS, MECKE J (1995) Stochas-
tic Geometry and its Applications. 2nd ed. Wiley, 
Chichester, West Sussex, United Kingdom. 

STOYAN D, SCHNABEL HD (1990) Description of 
relations between spatial variability of microstructure 
and mechanical strength of alumina ceramics. Ce-
ram Intern, 19: 11-18. 

STOYAN D, STOYAN H (1994) Fractals, Random 
Shapes and Point Fields. Methods of Geometrical 
Statistics. Wiley, Chichester, West Sussex, United 
Kingdom. 

VELTRI RW, CHRISTUDASS CS, ISHARWAL S 
(2012) Nuclear  morphometry, nucleomics and pros-
tate cancer progression. Asian J Androl, 14: 375-384. 

WALISZEWSKI P, WAGENLEHNER F, GATTENLOH-
NER S, WEIDNER W (2015) On the relationship 
between tumour structure and complexity of the spa-
tial distribution of cancer cell nuclei: a fractal geomet-
rical model of prostate carcinoma. Prostate, 75: 399-
414. 


