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SUMMARY 
 
The vertebrate brain is a remarkably complex 

anatomical structure which contains diverse subdi-
visions and neuronal subtypes with specific synap-
tic connections that contribute to the complexity of 
its function. The neural tube (the primordial brain) 
has to be progressively regionalized by means of 
precise control of the spatial and temporal ar-
rangement of an orchestrated cocktail of genes. 
These will regulate inter- and intracellular signals 
driving a proper molecular patterning and specifi-
cation of the distinct brain subdivisions, and thus 
will generate the structural basis of complexity and 
cellular diversity which characterize the brain. 

The present revision focuses on the main mole-
cules involved during early development of the 
vertebrate cerebellum, the most rostral and dorsal 
structure of the hindbrain. We will survey the litera-
ture related to the early molecular mechanisms 
arising from the isthmus to pattern the caudal mid-
brain and rostral hindbrain primordia. The isthmus 
retains morphogenetic properties to further refining 
these subdivisions. Once the patterning of the cer-
ebellar anlage is established, further molecular 
events (coming from the ventricular side and the 
rhombic lip) will specify the diverse neural cell pop-
ulation and the fine-tuning of the stereotyped mor-
phology and layers of the cerebellum. 

Finally, we will discuss the combination of molec-
ular genetics (gene expression pattern maps) and 
modern neuroanatomy (based on immunohisto-
chemistry and highly sensitive neuroimaging), 
which have led to an increased interest in describ-
ing the neurodevelopmental mechanisms underly-

ing structural disorders and intellectual discapaci-
ties that we currently observe in congenital anoma-
lies of the human cerebellum. 
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THE GENETIC COCKTAIL FOR SPECIFICATION 
OF THE CEREBELLAR ANLAGE 
 

During embryogenesis the CNS suffers several 
crucial changes. At neural plate stages the brain is 
an apparent homogenous sheet of epithelial cells, 
induced during gastrulation by the dorsal lip of the 
blastopore in amphibians (Spemann and Mangold, 
1924), or by the Hensen´s node in amniotes 
(Figdor and Stern, 1993). During the process of 
neurulation the neural plate pursues morphological 
differentiation, its edges thicken and roll up to 
close dorsally in order to form the neural tube. The 
anterior portion of the neural tube is undergoing 
drastic changes generating, by differential prolifer-
ation, the three primary brain vesicles: the fore-
b r a i n  ( p r o s e n c e p h a l o n ) ,  m i d b r a i n 
( m e s e n c e p h a l o n )  a n d  h i n d b r a i n 
(rhombencephalon); the caudal neural tube re-
mains with a cylindrical shape and generates the 
spinal cord (Martinez and Puelles, 2000). The con-
striction between the midbrain and hindbrain bulg-
es is called the isthmus. The discovery that puta-
tive regulatory genes are expressed in regionally 
restricted patterns in the developing neural tube 
has provided new tools for defining histogenic do-
mains and their boundaries at higher resolution. In 
the rhombencephalon, the segments are termed 
rhombomeres (r) that from anterior to posterior are 
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known as r0 (the isthmus) and r1-r7, followed by 
the pseudorhombomeres r8-r11 (Fig. 1A; Cam-
bronero and Puelles, 2000). Thus, the cerebellum 
originates from the first two rhombomeres. The 
vermis is part of the alar r0 and roof plates of r0 
and r1, whereas the hemispheres belong to the 
alar r1 (Fig. 1A; Martinez et al., 2012). Historically, 
Wilhelm His (1890) proposed already that the alar 
neuroepithelium of the anterior rhombencephalon 
(or metencephalon) as the origin of the cerebel-
lum. He postulated that from these paired plates, 
the cerebellum evolves as a bilateral organ, which 
would subsequently fuse, at the dorsal roof midline 
in a rostral-to-caudal direction, to form a uniform 
primordium. 

In the late 1980s and the 1990s, homotopic and 
isochronic quail-chick grafting experiments consist-
ently showed that the caudal part of the early mid-
brain vesicle had a peculiar “morphogenetic activi-
ty” and generated the rostral and medial part of the 
prospective cerebellum (the isthmus; Martinez and 
Alvarado-Mallart, 1989; Hallonet et al., 1990; Alva-
rez- Otero et al., 1993, Marin and Puelles, 1994). 
Other specific locations of the developing neural 
primordium have been identified and in fact, do 
regulate the identity and regional polarity of neigh-
boring neuroepithelial regions. These local signal-
ing centers are called secondary organizers, (Ruiz 
i Altaba, 1998; for review see Echevarria et al., 
2003). Thus, these secondary organizers operate 
during gastrulation; usually develop within the pre-
viously broadly regionalized neuroectoderm at giv-
en genetic boundaries (frequently where cells ex-
pressing different transcription factors are juxta-
posed). Their subsequent activity refines local neu-
ral identities along the anterior-posterior (AP) or 

dorsal-ventral (DV) axis and they regionalize the 
anterior neural plate and neural tube (Meinhardt, 
1983; Figdor and Stern, 1993; Wassef and Joyner, 
1997; Rubenstein et al., 1998; Joyner et al., 2000). 
At the A-P axis, three regions in the neural plate 
and tube have been identified as putative second-
ary organizers: the anterior neural ridge (ANR) at 
the anterior end of the neural plate, the zona lim-
itans intrathalamica (ZLI) in the diencephalon and 
the isthmic organizer (IsO) at the mid-hindbrain 
boundary (MHB; Vieira et al., 2010). Thus, the lat-
ter is contained at the isthmic constriction (IsO; 
Figure1B), which has been extensively studied 
during the last decade (Martinez and Alvarado-
Mallart, 1989; for review see Martinez, 2001; 
Wurst and Bally-Cuif, 2001; Echevarria et al., 
2003; Hidalgo-Sanchez et al., 2005; Aroca and 
Puelles 2005; Partanen 2007; Nakamura et al., 
2005). This region is involved in maintaining the 
MHB and providing structural polarity to the adjoin-
ing regions in order to orchestrate the complex 
cellular diversity of the mesencephalon (rostrally) 
and the cerebellum (caudally) (Itasaki and Naka-
mura, 1992; Rhinn and Brand, 2001; Martinez 
2001; Crespo-Enriquez et al., 2012; Martinez et 
al., 2013). 

As shortly indicated above, the earliest molecular 
event for the IsO specification is the differential 
expression in the neural plate of Otx2 in the rostral 
neuroepithelium and a Gbx2 in the posterior do-
main (Broccoli et al., 1999; Wassarman et al., 
1997; Shamim and Mason, 1998; Katahira et al., 
2000; Fig. 1B). Both domains become mutually 
excluded and complemented (Millet et al., 1999; 
Liu and Joyner, 2001; Garda et al., 2001). The 
caudal limit of Otx2 expression and the rostral limit 

Fig. 1. (A) Representative drawing of a ·3D mouse neural tube of E11.5 viewed caudal wards at which the transversal 
and longitudinal limits were delineated on the diencephalic (Di), mesencephalic (Mes) and rhombencephalic (Rho) 
brain subdivisions (see Martinez et al., 2012). (B) Shows in a color-coded distribution of the main gene expression pat-
terns at the isthmic region. Red arrows depicted the planar induction direction and propagation of the morphogen FGF8 
from the Isthmic organizer (IsO). (C) Molecular interaction diagram with the most important genes involved in the pat-
terning and specification of Mes and Rho vesicles.. CbH, cerebellar hemisphere; CbV, cerebellar vermis; ChT, choroid 
tela; Di, diencephalon; fp, floor plate; IC, inferior colliculus; pT, pretectum; pTh, prethalamus; r0-r8, rhombomeres 0-8; 
Rp, roof plate; SC, superior colliculus; TG, tegmental grey; Th, thalamus; ZLI, zona limitans intrathalamica. 
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of Gbx2 will therefore mark the molecular MHB 
(Hidalgo Sanchez et al., 1999; Millet et al., 1996; 
Martinez, 2001). 

Some of the key experiments, revealing the mo-
lecular nature and regulation of the signals for the 
specification of the IsO, were performed almost 20 
years ago. A member of the fibroblast, growth fac-
tor (FGF) family, Fgf8, was strongly expressed at 
the anatomical constriction between the rostral 
hindbrain and caudal midbrain (Heikinheimo et al., 
1994; Crossley and Martin 1995; Fig. 1B). Further-
more, beads containing FGF8 protein were found 
to effectively mimic the activity of the IsO tissue 
when transplanted either into the diencephalon or 
posterior hindbrain (Crossley et al., 1996; Martinez 
et al., 1999; Garda et al., 2001). Fgf8 expression is 
first activated at E8.5 in mice at the interface of 
Otx2 and Gbx2 positive neuroepithelial cells. The 
protein wingless 1 (Wnt1; a signal molecule for 
proliferation; Danielian and McMahon, 1996) and 
the homeodomain transcription factors of En-
grailed family En1 and En2 (Fig. 1B, C) are ex-
pressed across the incipient boundary, with a max-
imum expression level at the Fgf8 positive domain, 
showing decreasing gradients oriented either ros-
trally towards mesencephalic epithelium or caudal-
ly towards rhombencephalic epithelium Shortly 
later, Wnt1 is expressed in a thin band confined to 
the caudal most Otx2 expression domain, abutting 
the Fgf8 domain at the rostral most edge of the 
hindbrain. Although early Fgf8 expression appears 
in the territory coexpressing Otx2 /Gbx2 (Garda et 
al., 2001), double deletion of these two transcrip-
tion factors in the mouse does not affect the acti-
vation of Fgf8 expression (Li and Joyner, 2001; 
Martinez-Barbera et al., 2001). Other genes ex-
pressed at very early stages across the prospec-
tive MHB, such as Pax2 (Joyner, 1996; Rowitch 
and McMahon, 1995; Hidalgo Sanchez et al., 
2005) and Iroquas (Irxs) seem required for the ex-
pression of Otx2, Gbx2, and Fgf8 and the proper 
formation of the mesencephalic and rhombence-
phalic vesicles (Fig. 1C; Vieira et al., 2010). Lately, 
it is proposed that Gbx2 and Fgf8 are sequentially 
required for formation of the MHB, playing a cru-
cial role in maintaining here a boundary of cell line-
age by restricting cell movement (Sunmonu et al., 
2011). More recently it is proposed a bi-modal 
function of Wnt signaling directing the FGF8 activi-
ty gradient for regulating neuronal differentiation in 
the midbrain (Dyer et al., 2014). 

The morphogenetic activity of the IsO is then a 
consequence of a specific temporo-spatial expres-
sion of molecular signals, which regulate the spec-
ification and structural development of mesence-
phalic and cerebellar neuroepithelial territories. At 
the stabilized Otx2-Gbx2 boundary, the Wnt1, 
En1, Fgf8, and Pax2 genes initiate cross-
regulatory interactions and soon become interde-
pendent, as schematized in Figure1C. Once es-
tablished, the function of the MHB organizer relies 

on each member of this genetic network. Thus, 
alterations of Fgf8 and Gbx2 gene expression lead 
to a massive disruption of the mid-hindbrain neural 
territory by gene patterning deregulation 
(Wassarman et al., 1997; Martinez, 2001). A de-
creasing gradient of FGF8 protein concentration in 
the alar plate of the isthmus and r1 is fundamental 
for cell survival and the differential development of 
cerebellar regions (Basson et al., 2008; Chi et al., 
2003; Nakamura et al., 2005). On the other hand, 
in the basal plate, FGF8 gradient is crucial for cell 
survival and, together with Sonic Hedghog (SHH), 
essential for the development dopaminergic and 
serotonergic fates of progenitor cells, (Wurst and 
Bally-Cuif, 2001; Chi et al., 2003; Puelles and Ru-
benstein, 2003; Prakash et al., 2006). 

Importantly, FGF8 signaling spread over a field 
of target cells, at least in zebrafish, is established 
and maintained by two essential factors: firstly, 
free diffusion of single FGF8 molecules away from 
the secretion source through the extracellular 
space and secondly, a absorptive function of the 
receiving cells regulated by receptor-mediated en-
docytosis (Yu et al., 2011; Nowak et al., 2011; Mül-
ler et al., 2013). Several studies have disclosed 
the position preferences of neuroepithelial cells to 
FGF8 planar signal activity. The differential orien-
tation and polarity of the FGF8 signal seems to be 
directly dependent on the spatial position of mouse 
Fgf8-related secondary organizers and on the ac-
tivity of the negative modulators, Mkp3 (Echevarria 
et al., 2005), Sef (Furthauer et al., 2002; Tsang et 
al., 2002) and Sprouty1/2 (Spry1/2; Minowada et 
al., 1999; Echevarria et al., 2005b; Fig. 1C). Rele-
vant published findings in chick embryos claimed 
that FGF8b may also translocate into the nucleus, 
and this nuclear FGF8b could function as a tran-
scriptional regulator to induce Spry2 in the isthmus 
independently of ERK phosphorylation (Suzuki et 
al., 2012). Similar findings in mice found mainte-
nance of Spry2 expression pattern along the Isth-
mic region in temporally absence of FGF8 in the 
extracellular compartment, as well as ERK phos-
phorylation (Crespo-Enriquez et al., 2012). The 
latter findings reaffirm the existence of positional 
information encoded by the FGF8 signal through 
planar transcellular corridors in neuroepithelial 
cells along the vertebrate neural tube. 

 
MOLECULAR SPECIFICATION OF THE 
CEREBELLAR NEURAL SUBPOPULATION 

 
Neurochemically, the cerebellar cortex contains 

two glutamatergic neuronal subtypes (granule and 
unipolar brush cells) and six GABAergic subtypes 
(Purkinje, Golgi, Lugaro, Stellate, Basket and uni-
polar brush cells). The deep cerebellar nuclei 
(DCN; Figs. 2, 3A-D), contain both GABAergic in-
terneurons and glutamatergic projection neurons 
(Carletti and Rossi, 2008; Hoshino, 2006; Leto et 
al., 2006; Wang and Zoghbi, 2001). 
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Fate-mapping studies of the developing cerebel-
lum have uncovered when and where cells are 
born and which migratory routes they follow in or-
der to reach their final position. Cerebellar neurons 
are generated from two major germinal centers: 
the rhombic lip (Fig. 3A-D; RL) and ventricular 
zone (VZ), (Figs. 2, 3; Sotelo, 2004; Millen and 
Gleeson, 2008). The first germinal center, the ex-
ternal granule layer (EGL), originates from the RL 
(RL Fig. 2), which locates at the interface of the 
dorsal neural tube and the extended roof plate of 
the 4th ventricle (the choroid plexus; Wingate, 
2001). The EGL contains early granule cell precur-
sors that produce granule cells. Also, the glutama-
tergic DCN neurons and unipolar brush cells are 
derived from the RL (Carletti and Rossi, 2008). 
Therefore, all glutamatergic neurons in the cere-
bellum appear to originate from the RL. The rostral 
RL expresses Math1 (also called Atoh1; Akazawa 
et al., 1995) as early as embryonic stage E9.5 in 
mice. Math1 is induced by bone morphogenetic 
protein (BMP) from the roof plate, which itself is 
differentiating into the choroid plexus (Chp; Bas-
son et al., 2008; Fig. 2). Thereafter and during the 
first 2 postnatal weeks in mice, granule cell precur-
sors continue differentiating and migrating radially 
through the molecular cell layer (Fig. 3B; MCL) 
and through the purkinje cell layer (Fig. 3C; PCL) 
to form the final internal granular cell layer (Fig. 
3D; GCL) leaving their bifurcated axons in the 
MCL (the parallel fibers; Fig. 3A; Hatten and 
Heintz, 1995; Wang et al., 2005). The second ger-
minal center, the VZ, has been thought to give rise 
to cerebellar GABAergic neurons (Carletti and 
Rossi, 2008; Hoshino, 2006; Altman and Bayer, 
1997; Sotelo, 2004; Sudarov and Joyner, 2007; 
Fig. 2). Genetic fate-map analysis showed that 
pancreas transcription factor 1 (Ptf1a), which en-
codes a bHLH transcription factor, is expressed at 
the VZ and required for generating all cerebellar 
GABAergic neurons including the PCs. (Figs. 2, 
3A, 3C; Hoshino et al., 2005; Hoshino, 2006). 

Thus, Math1 and Ptf1a participate in regionaliz-
ing the cerebellar neuroepithelium, and define two 
distinct territories, the VZ (Ptf1a positive) and the 
rostral RL (Math1 positive), which generate GA-
BAergic and glutamatergic neurons, respectively 
(Hoshino et al., 2005; Pascual et al., 2007; Fig. 2). 
In addition to GABAergic neurons, progenitor cells 
located in the ventricular zone of the fourth ventri-
cle also give rise to Bergmann glial cells (BG). 
During development, the processes of BG provide 
structural support to the expanding cerebellar 
plate. Radial Bergmann fibers act as essential 
guide rails for the migration of granule cells (Rakic, 
1990) and contribute to the elaboration of Purkinje 
cell dendrites (Yamada et al., 2000) and stabilize 
synaptic connections onto these neurons (Lino et 
al., 2001). 

 
NEUROPATHOLOGICAL ALTERATIONS RE-
GARDING DEFECTS IN THE ISTHMIC ORGAN-
IZER 

 
The cerebellum, with its stereotyped circuitry, 

contributes to motor learning and correction of mo-
tor acts. Typical symptoms of cerebellar dysfunc-
tion include dysergia (problems with measuring 
appropriate muscle force), dysmetria (improper 
interpretation of distance), ataxia (disordered 
movement) and dysdiadochokineasia (inability to 
perform rapidly alternating movements). However, 
recent studies have highlighted the possibility that 
cerebellar defects might underlie some of the 
symptoms in subsets of patients diagnosed with 
neurodevelopmental disorders like  autism spec-
trum disorders (ASD), attention deficit hyperactivity 
disorder (ADHD) and schizophrenia (Villanueva, 
2012). 

Synergy between neuroimaging and molecular 
genetics has greatly improved our understanding 
of human developmental disorders arisen from the 
embryonic midbrain and hindbrain regions 
(Barkovich et al., 2007, 2009). Thus, several men-

Fig. 2. Schematic representation of 
a transversal section made at the 
rhombencephalic anlage leaving the 
fourth ventricle visible and in which 
a zoom of the cerebellar anlage is 
made. In the zoomed region the two 
main migratory mechanism (radial 
(blue arrows an lines) and tangential 
(pink arrows) and the different neu-
roblast population migratory routes 
according to their specification site 
and due to the main two genes in-
volved (Math1 from the ventricular 
zone (VZ; glutamatergic source) 
and Ptf1a from the rhombic lip (RL; 
GABAergic source). ap, alar plate; 
B, bascket cells; bp, basal plate; 
CbH, cerebellar hemisphere; CbV, 
cerebellar vermis; ChT, choroid tela; eD, excitatory deep cerebellar nuclei neurons; EGL, external granular layer; fp, 
floor plate; g, granular cells; G, Golgi cells; iD, inhibitory deep cerebellar nuclei neurons; Mes, mesencephalon; P, 
Purkinje cells; Rho, rhombencephalon; rp, roof plate; S, stellate cells; U, unipolar cells. 
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tal retardation syndromes or some autism spectral 
disorders (ASD; Soto-Ares et al., 2003; Courch-
esne et al., 2005) are commonly related to malfor-
mations of the cerebellum. For example, the ob-
servation of a human brain through neuroimaging 
techniques, showing a shortened midbrain and/or 
elongated pons is normally associated with an en-
largement of anterior part of the vermis, and par-
tially missing of mesencephalic tissue. This malfor-
mation is presumed to result from a predominance 
of GBX2 over OTX2 transcription factors and con-
sequently a rostral shift of the IsO (Chizhikov and 
Millen, 2003; Barkovich et al., 2009; Barkovich, 
2012). Another example is found in patients lack-
ing of the MID1 gene. By neuroimaging tech-
niques, brains are observed with a hypoplasia of 
the anterior cerebellar vermis (Pinson et al., 2004; 
Fontanella et al., 2008). Using mice lacking Mid1 
gene showed also vermis hypoplasia. In fact, ge-
netic investigations in these mice demonstrated a 
correlation of the morphology (i.e. rostralization of 
the isthmus) with a down- regulation of morphogen 
Fgf17, an important early signaling molecule to 

regulate proliferation and differentiation of midline 
cerebellar structures (Lancioni et al., 2010; Chi et 
al., 2003; Xu et al., 2000). 

Future research using this combination of tech-
niques will clarify our incomplete knowledge of the 
clinical consequences of hindbrain and cerebellar 
anomalies (Doherty et al., 2013). Moreover, the 
increasing of knowledge in basic embryology, ge-
netics, and in cellular and molecular biology of the 
developing brain must be emphasized to prove the 
importance in recognizing, understanding, and 
classifying better the human brain anomalies. 
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